Physics Set-3

1.	rope is no lon	A weight 'mg' is suspended from the middle of a rope whose ends are at same level. The ope is no longer horizontal. Find the same level. The rope is no longer horizontal. Find he minimum tension required to straighten the rope completely is					
	a) 0		c)	$\frac{\text{mg}}{2}$			
	b) 🛽			None of these			
2.	Find the angle	the angle of projection for a body to have same horizontal range & maximum					
	a) tan ⁻¹	4	c)	$\sin^{-1} 5$			
	b) sin ⁻¹	4	d)	None of these			
3.	Calculate the	m.					
	a) $50 \pi r$	ad/sec	c)	0			
	b) 80 π ra	ad/sec	d)	None of these			
4.	4. A balloon is going upward with velocity 12 m/sec. It releases a packet when it is						
	height 65m from the ground. How much time the packet will take to reach the g						
	$(g = 10 \text{ m/s}^2)$	10 m/s^2)					
	a) 5 sec		c)	7 sec			
	b) 6 sec		d)	8 sec			
5. In which of the following cases the centre of mass of a rod is certainly not				is certainly not at its centre?			
	a) The density increases from left to right up to the centre & then decreases.						
	b) The density decreases from left to right up to the centre & then increases.						
	c) The de	ensity continuously increas	es from left to righ	nt.			
	d) The de	ensity continuously decrea	ses from left to rig	ht.			
6.	A hollow met	allic sphere of radius 3cm i	s charged such tha	nt the potential on its surface			
	is 60V. The po	is 60V. The potential at a distance 2cm from the centre is					
	a) 0		c)	60V			
	b) 30V		d)	40V			

	b)	Low resistance	d)	No resistance			
8.	The ratio of average value of alternating voltage over a full cycle to peak voltage is						
	a)	$\frac{\pi}{}$	c)	0			
	u,	2	d)	π			
	b)	$\frac{2}{\pi}$					
9.	The proportionality relation between half-life T & radioactive decay constant λ is						
	a)	Ταλ	c)	$T\alpha\frac{1}{\lambda^2}$			
	h)	$T \alpha \frac{1}{\lambda}$					
	υ,	λ	d)	$T \alpha \frac{1}{\lambda^4}$			
10.	10. You are given four bulbs of 25W, 40W, 60W & 90W. Which of them has lowest						
		resistance?					
	a)	25W	c)	60W			
	b)	40W	d)	90W			
11.	The ef	ficiency of carnot's engine is equal to					
	a)	1	c)	>1			
	b)	<1	d)	0			
12.	A cell o	of emf 'E' is connected across a conductor of res	istaı	nce 'R'. If the potential			
	differe	nce across the terminals of conductor is found t	o be	e 'V', then the internal			
	resista	nce of the cell is					
	a)	RV(E-V)	c)	$\left(\frac{E-R}{V}\right)R$			
	h)	$\left(\frac{E-V}{V}\right)R$					
12		\ \ \ /	•	R(E-V)			
13. A light & heavy body have equal kinetic energy. Which one has greater momentum							
	•	The least body					
	•	The heavy body.					
	c)	Both have equal momentum. It's not possible to say anything without addition	nal	information			
11	-	It's not possible to say anything without addition and ition of a satellite of earth is 5 hours. If the					
14.		e is increased to four times the previous value, t	•				
	a)	10 hours	.ne i c)	40 hours			
	,	60 hours	-,	20 hours			
	IJ)	oo nours	uj	20 HOUI 3			

c) High resistance

7. A junction diode when forward biased behave as a device of

a) Infinite resistance

15. If a she	ell fired from a cannon, explodes in mid-air then							
	a) Its total kinetic energy increases.							
-	its total momentum decreases.							
•	Its total momentum increases.							
•	None of these							
16. Application of Bernoulli's theorem can be seen in								
• •	Dynamic lift of aeroplane	c)	Helicopter					
•	Hydraulic process		None of these					
17. A breaker full of H_2O is kept in a room. If it cools from $80^{\circ}C$ to $75^{\circ}C$ in t_1 minutes, $75^{\circ}C$								
	C in t_2 minutes & 70°C to 65°C in t_3 minutes, the		- · · · · · · · · · · · · · · · · · · ·					
	$t_1 > t_2 > t_3$		$t_1 < t_2 = t_3$					
•	$t_1 = t_2 = t_3$	•	$t_1 < t_2 < t_3$					
18. With rise in temperature, which one of the following force can never increase?								
	Elastic force		Viscous force					
b)	Frictional force	d)	Force due to surface tension					
19. The –ve value of susceptibility is possessed by a substance which is								
a)	Ferromagnetic	c)	Paramagnetic					
b)	Diamagnetic	d)	Nonmagnetic					
20. B rays emitted by a radioactive material are								
a)	e – m radiation.							
b)	The electrons orbiting around the nucleus.							
c)	Charged particles emitted by nucleus.							
d)	Neutral particles.							

Answers:

- 1. b
- 2. a
- 3. d
- **4.** a
- 5. b
- 6. c
- **7. b**
- 8. d
- 9. b
- 10. a
- 11. b
- 12. b
- 13. d
- **14.** c
- 15. b
- 16. a
- 17. a
- 18. d
- 19. d
- **20.** c